

Composição do pescado e alterações pós-morte

Prof. Peter Gaberz Kirschnik

Faculdade Católica do Tocantins

Zootecnista, Mestre e Doutor emAquicultura

ESTRUTURA DO CORPO E DOS MÚSCULOS

1.1 - FORMA DO CORPO DO PESCADO

✓ Resultado da adaptação às condições específicas do "habitat" para sobrevivência e reprodução

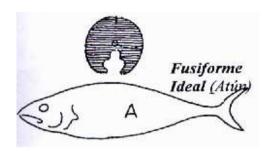
Ministério da Agricultura, Pecuária e Abastecimento

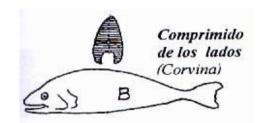
INFLUÊNCIA DA FORMA DOS PEIXES SOBRE OS PROCESSOS TECNOLÓGICOS

Dimensionamento das caixas, prateleiras, câmaras refrigeradas p/ armazenamento a bordo/frigorífico

Operações de evisceração, decapitação, descamação e limpeza geral

Velocidade de resfriamento: gelo, água do mar refrigerada ou congelamento Adequação para produzir postas, filés, corpo limpo (rendimento)




FORMAS MAIS COMUNS DE PEIXES

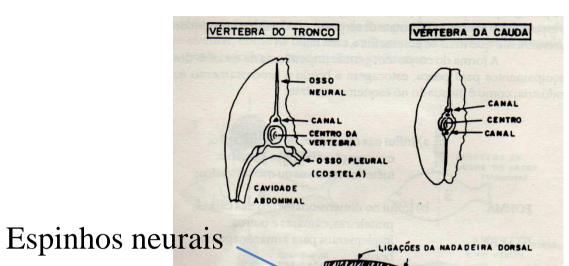
Fuso ou torpedo: bons nadadores, pelágicos (salmão, arenque, tubarão, atum)

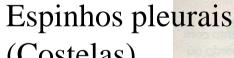
Achatado dorso-ventral: pouco velozes, demersais (pescada, corvina, castanha, curimbatá, cascudo)

Achatado lateralmente: compressão mais intensa diminui a espessura do corpo (tambaqui, tilápia), habitam águas pouco profundas

1.2. Esqueleto

- ✓ Coluna vertebral, crânio e ossos que sustentam os raios das nadadeiras
 - ✓ Função → suporte interno do corpo, composto por :
 - OSSOS
 - cartilagem
 - espinhos duros
 - espinhos flexíveis nas nadadeiras
 - escamas e dentes





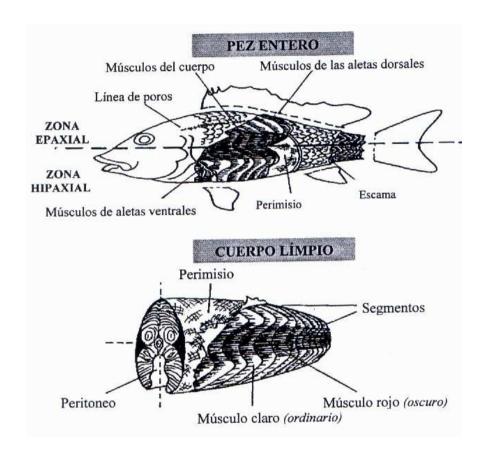
Espinhos epipleurais <

(Costelas)

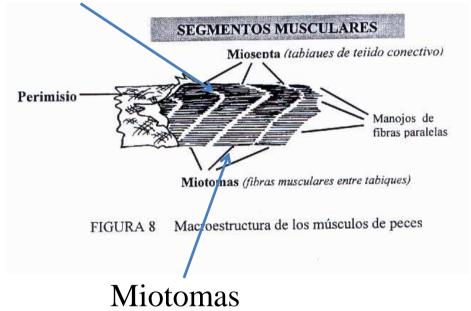
ESPINHOS NEURAIS

ESPINHOS PLEURAIS

FILÉS

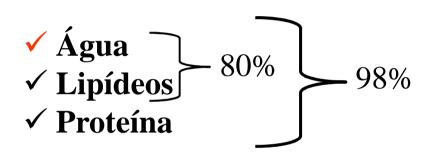

LIGAÇÕES DA NADADEIRA ANAL

OSSOS (ESPINHOS)



Macroestrutura dos músculos do peixes

Miosepta



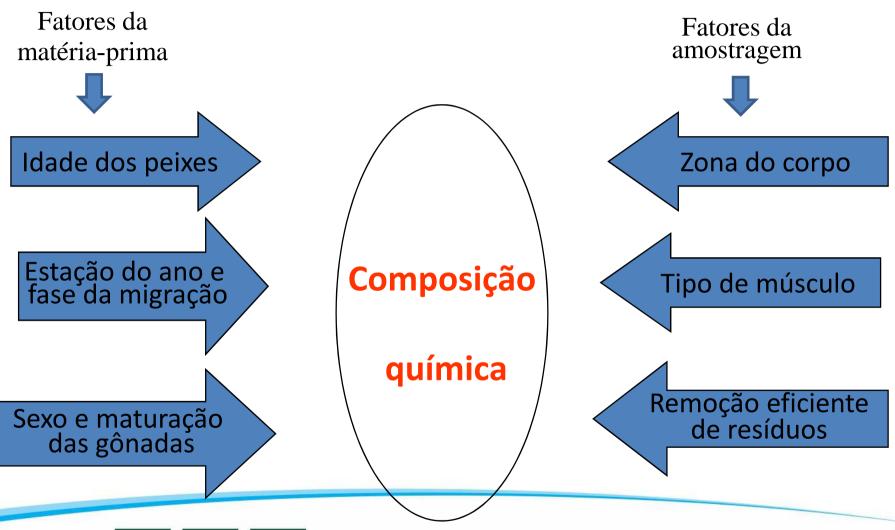
2. COMPOSIÇÃO QUÍMICA E VALOR NUTRITIVO

2.1. Principais componentes químicos:

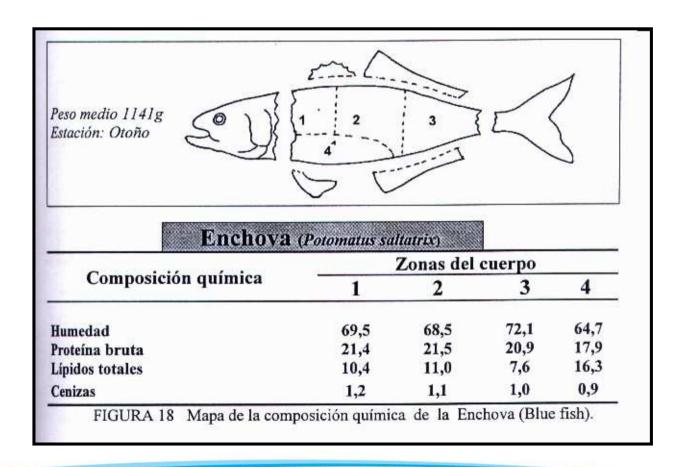
Importância no valor nutritivo, propriedades texturais, qualidade organoléptica e capacidade de armazenamento da carne

- **✓** Carboidratos
- ✓ Vitaminas e sais minerais

Papel importante nos processos bioquímicos pós-morte, características sensoriais, valor nutritivo

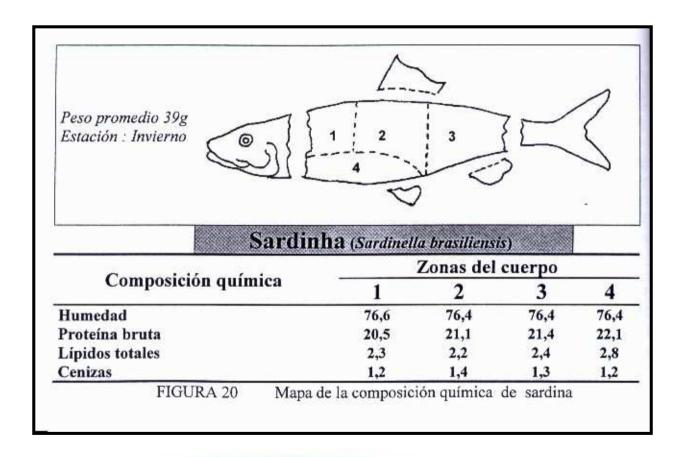


2.2 Fatores que afetam a composição química dos pescados



Ministério da Agricultura, Pecuária e Abastecimento

Variações da composição química nas regiões do corpo da Enchova



Variações da composição química no corpo da Sardinha

CLASSIFICAÇÃO DAS ESPÉCIES BASEADA NA COMPOSIÇÃO QUÍMICA

De acordo com seu teor de gordura (Jacquot, 1961):

a) < 2% peixes magros

b) entre 3 e 9% peixes semi-gordos

c) > 10% peixes gordos

Exemplos:

- a) linguado, pargo, cação azul, tilápia, traíra
- b) Albacora, bagre amarelo, tainha, curimbatá, pacu
- c) Enchova, savelha, mandi

2.3. 1. Proteínas

Músculo é composto vários grupo de proteínas

- ✓ Sarcoplasmáticas
- ✓ Miofibrilares
- ✓ Conectivas

Proteínas sarcoplasmáticas (hidrossolúveis ou solúveis em soluções diluídas de sais de força iônica $I \leq 0,1M$)

- ✓ proteínas do sarcoplasma com funções bioquímicas na célula
- ✓ compreendem 20 a 30 % da PB (peixes pelágicos, maiores teores)
- ✓ na maioria são proteínas globulares com atividades enzimáticas.

Ex: albuminas, mioglobinas, lipoproteínas, proteínas ligadas aos ácidos nucléicos.

Proteínas miofibrilares

(solúveis em soluções salinas mais concentradas I > 0.5M)

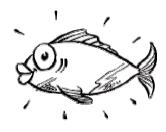
- ✓ 40 a 60% da PB do músculo
- ✓ Importantes do ponto de vista nutricional e tecnológico
- ✓ principais representantes → actina e miosina : função contráctil
- ✓ topomiosina e troponina

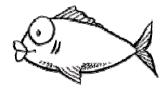
 reguladoras da contração muscular.

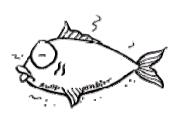
Proteínas conectivas

(ou estromáticas, são insolúveis em água e soluções salinas; pequena fração solubiliza-se em álcali)

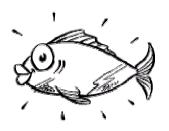
- ✓ 3% da PB dos teleósteos e até 10% dos elasmobrânquios
- ✓ principais: colágeno e elastina
- ✓ peixes: menor quantidade de colágeno que outros animais
- ✓ elastina: forma fibras semelhante à goma (peixes 1/10 do teor de colágeno)

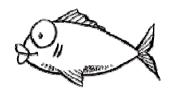






ALTERAÇÕES PÓS-MORTEM EM PESCADOS





Deterioração do pescado

OXIDAÇÃO DE GORDURAS

ATIVIDADE DE MICRORGANISMOS

Brânquias

Intestino

ALTERAÇÕES PÓS-MORTEM

- Pescado extremamente perecível
 - ✓ Composição química
 - ✓ Menor quantidade de tecido conjuntivo
 - ✓Intestino volumoso
 - ✓ Presença de brânquias

Alterações físicas

Alterações químicas Alterações microbiológicas

A natureza e rapidez da deterioração dependem de vários fatores:

- Tipo de pescado ----- tamanho, forma e composição corporal
- Condições do pescado após a captura exaustão
- Natureza e extensão da contaminação bacteriana
 - > Após a captura fontes adicionais de contaminantes são introduzidas (guelras, parede intestinal, manipulação)

Principais Alterações do Pescado Após a Morte

Rigor Mortis

Pré-rigor mortis

Rigor mortis "pleno"

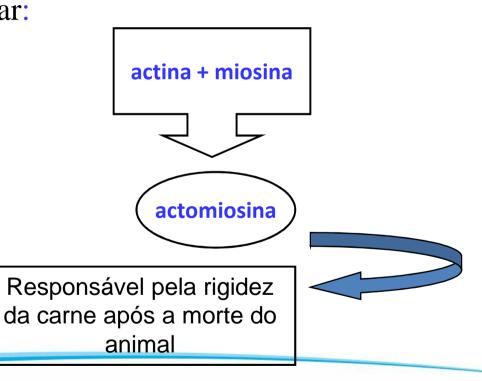
Pós-rigor mortis

Autólise

Ação de microrganismos

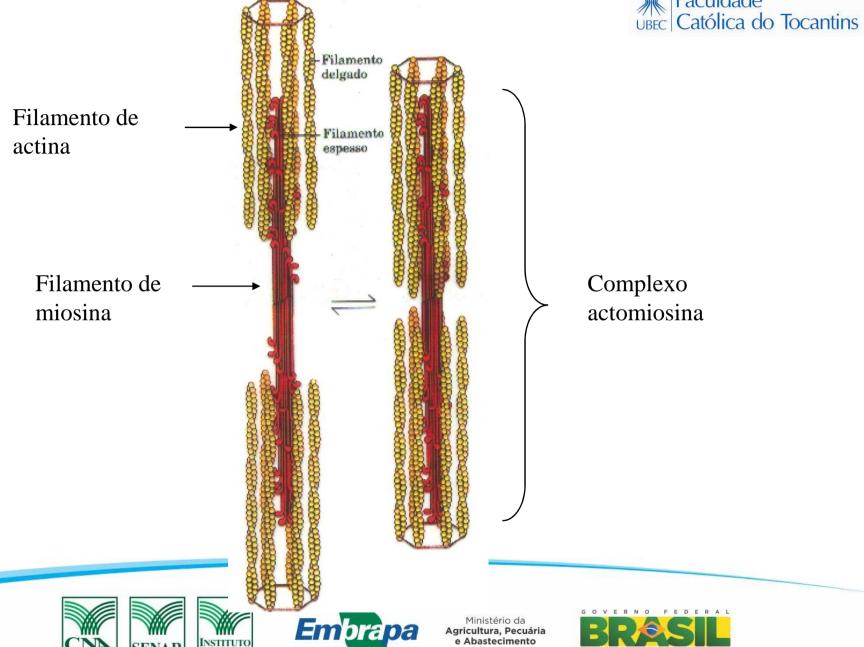
RIGOR MORTIS

- ✓ Rigor mortis caracteriza-se como a perda da extensibilidade dos músculos como resultado da alteração dos ciclos de contração e relaxamento. Ocorre enrijecimento muscular temporariamente irreversível.
- ✓ Durante o rigor mortis ocorrem várias alterações bioquímicas e modificações das propriedades físicas do músculo.



Modificações nas propriedades físicas dos músculos

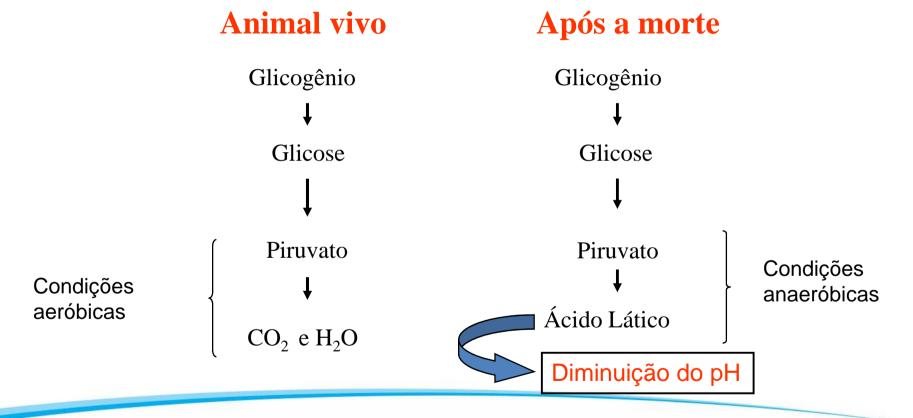
- Músculo \longrightarrow miofribilas são formadas principalmente pela superposição de 2 tipos de filamentos: actina e miosina
- Contração muscular:



RIGOR MORTIS

Alterações bioquímicas

- 1) Metabolismo do Glicogênio:
- ✓ conteúdo de glicogênio em peixes varia com
 - as espécies
 - partes do corpo
 - condições de morte
 - atividade de locomoção



RIGOR MORTIS

Alterações bioquímicas

✓ Degradação do glicogênio:

Alterações do pH muscular

- O ácido lático gerado a partir do glicogênio em condições de anoxia é a causa principal da diminuição do pH pós mortem nos músculos dos pescados.
- A queda do pH é observada, na maioria dos peixes, após 24 horas de captura, mantendo-se baixo por alguns dias.
- » A diminuição de 1 unidade de pH é causado por aproximadamente 60 µg de ácido lático/g de músculo em peixes
- Durante as etapas posteriores, a decomposição dos compostos nitrogenados provoca o aumento do pH muscular.

- ✓ Duração da fase de pré-rigor depende das reservas de ATP e glicogênio no momento da morte
- ✓ Uma fase de pré-rigor dilatada corresponderá a um rigor pleno prolongado (conveniente)
- ✓ Propriedades físicas do músculo na etapa do pré-rigor:

Propriedades	Situação no pré-rigor	
pH muscular	Encontra-se em torno de 7,0 na maioria das	
	espécies	
Retenção de água	Tem um valor de 100% (não há exudação com a	
	pressão)	
Extensibilidade	Músculo pode ser esticado até 15% além do seu	
	comprimento	
Extração de proteínas	Atinge o valor máximo em torno de 90%	
Resposta ao estímulos	Os músculos contraem-se ao estímulo elétrico	

Rigor mortis pleno

Características da etapa do rigor mortis pleno:

- ✓ Ausência de reação ao estímulo elétrico
- ✓ O músculo ainda apresenta suas defesas naturais intactas (pele, muco, membranas)
- ✓ pH muscular ligeiramente ácido (inibição de microorganismos e enzimas endógenas)
- ✓ Musculatura fechada que impede a disseminação de enzimas e microorganismos

Pós-rigor mortis

Propriedades físicas do músculo na etapa do pós-rigor:

Propriedades	Situação no pós-rigor	
pH muscular	Aumenta e atinge valores ligeiramente abaixo ao	
	pré-rigor	
Retenção de água	Aumenta e estabiliza-se num valor ligeiramente	
	abaixo ao pré-rigor	
Extensibilidade	É maior que no músculo em rigor e muito	
	próxima ao do pré-rigor	
Extração de proteínas	Recupera quase 100% do valor do pré-rigor	
Resposta ao estímulos	Não responde aos estímulos	

Figura 1. Medida do início do rigor mortis em tilápia do Nilo

Figura 2. Rigor mortis pleno em tilápia do Nilo

Fatores que interferem na duração do rigor mortis:

- Fatores fisiológicos (nutrição e reprodução)
- Espécie (diferenças na composição química)
- Grau de exaustão (reserva de energia)
- Tamanho (menores entram em rigor em menos tempo)
- Temperatura de armazenamento (importante)

Tempo do rigor para algumas especties lo Tocantins

Espécies	Temperatura °C	Tempo de entrada no rigor Horas	Tempo de saída do rigor Horas
Bacalhau	zero	2-8	20 - 65
(rede de arrasto)	2,7	4,5 - 8,5	54 - 64
,	5,5 - 6,5	5	45
	16	2 – 5,5	16 - 20
Bacalhau	2,7	14 - 15	72 - 96
(descansado)			
Linguado	zero	7 - 11	54 - 55
Peixe vermelho (rede)	zero	22	120
Pescadinha	zero	1	20
(rede)			

AUTÓLISE

- Autólise

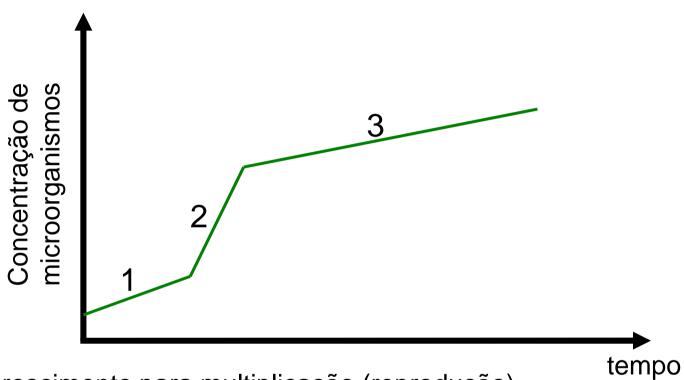
 autodigestão causada por enzimas musculares e/ou digestivas, conduzindo ao amolecimento dos tecidos
- Animal vivo membrana impermeável separa as enzimas autolíticas dos componentes da célula
- Após a morte → pH cai abaixo de 7,0 e a membrana se torna permeável
 - Autólise é causada principalmente por enzimas "catepsinas"(A, B, C, D)
 - Catepsina D atua sobre a miosina, actina e colágeno, causando desintegração dos feixes musculares

AÇÃO DE MICROORGANISMOS Contins

A principal contaminação do pescado ocorre após a captura através do uso de aparelhos e equipamentos e através da manipulação humana

Classificação de microorganismos com relação à temperatura.

Tipos	Capacidade de desenvolvimento	Faixa de temperatura ótima
Psicrófilos	Podem desenvolver-se a 0°C	20 a 35°C
Mesófilos	Podem desenvolver-se a 0°C e 55°C	25 a 45°C
Termófilos	Podem desenvolver-se a 55°C	40 a 60°C



Ação de Microorganismos

- 1 Crescimento para multiplicação (reprodução)
- 2 Crescimento exponencial
- 3 Crescimento estacionário (entra em putrefação)

